# TP1 10.30 Linear Molecule # In a linear molecule of symmetric construction of type A-B-A the atoms are harmonically coupled and are performing small oscillations around the equilibrium positions. # s1'' = -omega0^2*s1 + omega0^2*s2 # s2'' = -my (-omega0^2*s1 + omega0^2*s2 + omega0^2*s2 - omega0^2*s3) # s3'' = omega0^2*s2 - omega0^2*s3 # NB: all integrators have to run with 100 nF capacitance, i.e. SLOW mode coefficient(1): omega0^2_1 # omega0^2 for s1 coefficient(2): omega0^2_2 # omega0^2 for s2 # same as omega0^2_1 coefficient(3): omega0^2_3 # omega0^2 for s3 # same as omega0^2_1 coefficient(4): my coefficient(5): -1 -> -s1_0 # initial position of s1 coefficient(6): -1 -> -s3_0 # initial position of s3 # initial positon of s2, the central mass, is set to 0 iintegrate -omega0^2_1*s1, omega0^2_2*s2 -> -s1' # input is s1'' iintegrate -s1' -> s1 IC: -s1_0 invert s1 -> -s1 -s1 * omega0^2_1 -> -omega0^2_1*s1 iintegrate -my*bracket -> -s2' # input is s2'' # the following integrator has to be built up manually as THAT only has 5 integrators and we need 6 # iintegrate -s2' -> s2 openamp -s2' -> s2 loopback: capacitor(100nF) s2 * omega0^2_2 -> omega0^2_2*s2 isum -omega0^2_1*s1, omega0^2_2*s2, omega0^2_2*s2, -omega0^2_3*s3 -> -bracket -bracket * my -> -my*bracket iintegrate omega0^2_2*s2, -omega0^2_3*s3 -> -s3' # input is s3'' iintegrate -s3' -> s3 IC: -s3_0 invert s3 -> -s3 -s3 * omega0^2_3 -> -omega0^2_3*s3 output(x): s1 output(y): s2 output(z): s3